下载

    看看哪些下载,最适合您的需求

      如何购买

      请联系当地销售网点,提升您的设计环境

                        • Altium Designer

                          专业统一的设计系统,高效轻松的环境和原生态3D PCB编辑器

                        • Altium数据保险库

                          ECAD设计数据、库、工作流程和团队管理的一体化平台

                        • Altium年度客户服务计划

                          Altium产品不断更新,为您提供最新技术

                        • TASKING

                          世界知名的 卓越编译技术,TASKING工具已有超过25年的历史。

                        • 产品扩展

                          衍生工具,系统分析,新设备以及Altium产品设计流程的扩展支持

                        • Altium DXP开发平台

                          创建并设置自定义扩展,为Altium产品集成业务系统

                        • Octopart

                          快速、精准和简单地使用元器件搜索,连接您与元器件数据和供应链的纽带。

                        Altium Designer 16

                        轻松的原生3D PCB设计

                        年度客户服务计划

                        始终使用最新科技保持高效率设计

                        • 论坛

                          Altium用户与发烧友的互动平台

                        • 博客

                          我们的博客展示我们关注的领域,希望同样也能激起您的兴趣

                        • 创意

                          为Altium工具新功能开发提交您的创意并参与投票

                        • Bug 提交

                          通过提交Bug,对重要事项进行投票,帮助提升软件性能

                        • 微博墙

                          您订阅的AltiumLive,邀您一起参与关注

                        • 测试项目

                          参与我们的测试项目,更早获取Altium最新版

                        下载

                        看看哪些下载,最适合您的需求

                        客户成功案例

                        我们的用户正在改变着各行各业,了解详情

                        如何购买

                        请联系当地销售网点,提高您的设计环境

                        • 文档

                          您在TechDocs上,可以找到大量在线的免费文档

                        • 培训与活动

                          查看时间表,注册遍布全球的线上及线下的培训和活动

                        • 设计内容

                          浏览我们免费的大容量设计内容库,其中包括元器件,模板和参考设计

                        • 网络研讨会

                          在线参加网络研讨会或观看我们以往的研讨会视频。

                        • 技术支持

                          使用多元化的技术支持模式及自助服务选项来解决您的问题。

                        • 视频库

                          简洁明了的指导视频教程,帮助您启程Altium Designer

                        详谈软硬结合板-第5部分

                        By Ben Jordan, Dec 31, 1969

                        印刷电路板的应用及实例。

                        随着我越深入地了解软硬结合板技术,就越惊奇地发现更多超炫的应用。上周,在圣克拉,我出席了今年的PCB西部会展。在那儿,我还见到了Altium用户群和一些老朋友!我期待能够发现一些涉足软硬结合制作的制造商和“专家”,可以从他们获取一些秘诀、暗示和技巧。

                        在过去的几年中,我听到很多的柔性电路制造商出现在阳光加利福尼亚。而且柔性电路板和软硬结合板的制板商在质量、精度和层数方面都有了提升。

                        这真是太棒了。

                        所以,本周的博客,我想与你分享几个我学到的简洁技巧和应用理念。最棒的是,现在有大量的制板商可以做这些事,而且它们的数量每年都在递增。

                        动态柔性的想法

                        在您的产品中设计柔性部分一般是基于如下两个原理:其一,构建一个结构紧凑和装配高效的设备;其二,使电路动态地机械结构融合起来。当然,也可以根据这两条原理来选择柔性电路的作用。现在,让我们来看看几个能够启发您的设计灵感的柔性电路例子。

                        机架结构


                        这是一个非常典型的动态柔性电路的应用,它可以装在3D打印机上或数控机床头的机械头上。通常,它会被沿着X方向安装,工具头会沿着z轴方向运动。这里显示出了2个轴向的运动,机架结构本身也会沿着Y轴方向移动。

                        柔性电路的总长度是运动头到达最末端的长度,再加上弯角和弯曲的长度。

                        弯角的部分是用于连接在Z轴移动的机械头后面,它与机械头一起沿着机架结构来回穿梭。柔性电路的终端必须留有足够的弯曲长度。

                        对于这种类型的应用,最好使用单层冷轧退火铜并使弯曲半径越大越好,这样的设计能够延长产品的寿命。

                        把柔性电路与不锈钢条粘贴在一起也可以延长产品的使用寿命。

                        图1初始柔性电路设计

                        制造考虑:拼板

                        上面的例子很好地引出了一个制造和成本的问题。如果根据理论使用直角L形的柔性电路,那么在一个拼板上我们可以制造6个相同的柔性电路,我们浪费了近50%面板空间。如果在它的上面再焊装元器件,我们还要支付额外的加工成本和时间。这个柔性电路的拼板图如图2显示。

                        图2:数控机架柔性电路的拼板。

                        使用柔性的另外一个好处是,如果我们使用合适的材料并且能够保证正确地安装,那么我们可以设计一个非常小半径的折痕。这是上个应用的一个很好的替代方案,不过要在特定环境中使用。

                        图3显示了另外的设计,它使用45°的折痕代替了前面设计的90°弯角。


                        在这个案例中,这个折痕是适合的,因为柔性电路的这部分将固定在大型刚性的机械体上,因此不会产生过度损耗。

                        这个方案会显著降低成本,拾放加工的工艺也简化了。然而,你可能会想到这点:由于折痕的缘故,元器件需要放置末端的对面层焊组装。

                        图4显示了在相同面板上,折痕方案的拼板,面板产量翻了一番!

                        图4:相同的面板尺寸——折痕曲方案的柔性设计使每个面板产量增加一倍!

                        规划层叠结构

                        相对软硬结合板,纯粹的柔性电层堆栈结构肯定简单。然而,我们仍然需要在面板放置锚定点。大多数柔性电路设计会要求,在安装的元器件或者终端区域要放加强板。图5显示了用于上述机架结构的柔性板的层栈结构,加强板的部分是“刚性”堆栈,在PCB编辑器中它固定以3D方式显示。

                        图5:机架结构例子中使用的柔性板的层栈结构定义。

                        图6:可旋转柔性设计的PCB外框。

                        旋转设备

                        看一下图6,在PCB编辑器中的我们使用了水平工作指南,它有助于基于柔性电路部分的弯曲圆周设计出精确的板形轮廓。同时,我们还能在PCB编辑器的板级规划模式下,规划和显示柔性电路的折痕位置,在3D模式下,准确模拟出柔性电路板弯曲程度。

                        图7和图8显示了这种设计的3D模式视图。

                        图7:旋转步进控制板级的3D视图。长“臂”可以使电机以及它的控制板板旋转的角度超过360°。


                        图8:装配好的完整折叠视图,包括3D步进电机。

                        图8中,我标注了运动箭头及柔性电路的固定端,来给你一个直观的概念。

                        这种布局设计使得实现360°旋转更加容易。

                        这是一个假设的例子,对象是步进电机,这个设计应用于旋转传感器是非常合适的。

                        固定的柔性电路应用

                        平面磁性元件(变压器和电感器)

                        使用柔性板或者说软硬结合板做平面磁性元件的应用越来越多。一个月前,我自己维修了我家的43寸液晶电视。当我检查了背光逆变器板时,看到一排整齐的升压DC-DC稳压电路,在稳压电路中使用了由柔性电路做绕组的变压器。绕组是由旋转的柔性电路构成,如图9所示。结构的紧凑令人难以置信。


                        *它的终端连接到贴片保险丝上,保险丝烧断了。现在回想起来,我当时真应该拍张照片,给你们瞧瞧……

                        使用柔性电路做平面磁性元器件有明显的优势,非常薄的聚酰亚胺薄膜就可以实现非常高的安全隔离。而且在很高的的温度下聚酰亚胺薄膜还保持性能稳定,这使得它适用于热搪瓷灌封工艺。从损耗的角度来看,使用蚀刻铜线固然需要更宽的走线,但是因为它如肌肤的薄度,可以非常容易地减少涡流损耗。

                        图9:未卷曲的四绕组电感。


                        更精致的入口和出口设计,能够把它们重叠起来,这个的出口对应下一个的入口。这样的设计会比在平面上设计多个独立的绕组,会更加容易增加线圈的匝数,如图10所示。

                        由2层柔性板构成的18层绕组

                        将这一概念进一步地延展,我们可以在转换器的设计中使用中更多的柔性层,然后把它们重叠起来。如图11中所示的2层柔性电路变压器设计,E18平面铁氧体磁芯穿过PCB上的切口。这种做法可以任意延伸下去,它的实际限制取决于最终折叠后板的厚度。如图11,双面柔性板最终构成了18层的变压器绕组。

                        每个切口的中心,都可以有单圈电感绕组。弯曲轨道周围的侧边可以旋转半圈,由于磁路面积的侧边实际有效性只有一半,因此,你可能无法完全覆盖所有面积,但通过添加一个或两个额外的半圈匝数,就可以实现全覆盖。

                        图11:自上向下看下柔性电路变压器。单一大电流绕组安装在顶部,六个小电流绕组安装在底部,可以使用Altium Designer总线布线工具实现。

                        这可能会造成混乱,因为你必须记录恰当的铁氧体磁芯缠绕方向轨道。由于整个柔性电路将垂直折叠,我在机械1层添加了箭头,与各相邻绕组相对,同时提醒我,哪条需要铺铜路径。为解释得更加清楚,请参加图12

                        图12:机械1层显示板层轮廓以及绕组方向箭头指引。

                        核心的柔性部件安装如下图所示。请注意,它将与连接到软硬结合板,通常电路都是在2层刚性印刷电路板上,柔性部分通常是所有核心绕组所需的附加层。当然,是使用大面积的柔性层,还是在硬性板设计中加入更多地层,这需要权衡成本来决定。

                        图13 :完全折叠的变压器,通过切口连接3D飞磁E18铁氧体磁芯。

                        多层软硬结合板

                        如何保持多层柔性板的灵活性和耐用性

                        许多军事、航空航天或类似的高密度设计,它们需要在狭小的空间内实现紧凑布局和可靠装配。这样就很难在硬板之间使用多层柔性电路。这在高速数字设计中同样需要,因为当总线电路在柔性板上走过时需要添加屏蔽或者平面层。

                        现在的问题是:为了保持良好的灵活性,柔性电路层的数量必须尽可能的少。通常的结构是一层PI基板、附着在基板两侧的铜皮层以及PI保护膜。

                        在“普通”的设计中,重叠的柔性电路的长度是相同的。如图14展示的情形,一旦装配完成,那么在硬质板间的柔性部分的弯曲会产生很大的张力。

                        图14:当多个柔性电路重叠并有相同的长度,那么在外部的柔性电路上会产生张伸,在内部的柔性电路上会产生挤压。请注意,在柔性电路与刚性电路接触部分要使用胶珠。

                        有经验的软硬结合板制造商,会建议使用“装订术”。“装订术”是一个可行的方法,根据使用柔性电路弯曲半径来确定其他个柔性电路和基板的长度。如图15中所示。

                        图15:装订术(来源:IPC-2223B,2008 P26)

                        你可能会说这钟方法十分费钱,而且对设计来说是个挑战。通常更好的替代方法是使用相同的长度和半径的柔性电路,但将不同的柔性电路层分隔开,彼此不重叠。见下图16所示。

                        图16:替代的装订术结构。

                        不损失走线层数的超紧密弯曲

                        如果之前没有看见过它,这绝对是一个神奇的东西!在PCB西部展会时,我从供应商那儿,拍了几张软硬结合板和柔性电路板的照片。图17显示了在我大拇指和食指间,是一个小型的电路板,它使用了几个S形叶状连接,提高了各部分之间的最小弯曲半径。在这张照片中可能看不太清楚清楚,元器件安装在背面有加强板的部分。

                        图17:具有多个铜皮层并且保持180°的弯曲。

                        这一概念当然可以延伸到多个用途。如图18所示,这是一个超灵活的显示板。在更宽广的、有加强板的部分上排列着一个的LED矩阵。整个装配过程会更加严格,因为它是由很多的铜皮层和PI膜层压在一起的。同样,使用了S弯可以使整个设计放置进弧形的外壳。我相信,矩阵中的每个LED都是单独控制的,所以在这个设计中有很多独立的走线。

                        图18:X-Y S型弯曲柔性阵列。

                        将这个概念更进一步拓展,图19的应用简直太酷了。这是一个非常紧凑的设计。根据PCB供应商的介绍,每个独立的柔性电路部分有8层。这样的柔性电路本身没有足够的灵活性。但使用多次S弯曲可以使它折叠到可以装进最终的机械外壳,甚至可以包含数百个高速内存和显示连接。注意,柔性电路的顶层是实心铜屏蔽!

                        图19: 8层柔性板层和4个额外的硬质板层。注意,柔性板的顶层是实心铜屏蔽,软硬板结和部分的边缘有粘接剂。

                        对于极具创意的设计师,总会延伸出更多的应用,如图20所示!

                        图20:谁说软硬结合板不能有折痕?